NAME:

Energy Review

- 1. Work is required to lift a barbell. How many times more work is required to lift the barbell three times as high?
- 2. Which requires more work lifting a 10-kg sack a height of 2 meters, or lifting a 5-kg sack a height of 4 meters?
- 3. How many Joules of work are done on an object when a force of 10 N pushes it a distance of 10 m?
- 4. a. How much power is required to do 100 J of work in a time of 2 seconds?
 - b. How much power is required to do 100 J of work in a time of 4 seconds?
 - c. How much power is required to do 100 J of work in a time of 0.5 seconds?
- 5. If you do 100 J of work to lift a bucket of water, how much potential energy do you give the bucket?
- 6. A 1 kg rock is held above the ground and has 250 J of potential energy. It is then dropped.a. What is its kinetic energy while it is still being held?
 - a. What is its kinetic energy while it is still being he
 - b. What is the total energy of the rock?
 - c. What is its potential energy just as it hits the ground?
 - d. What is its kinetic energy just as it hits the ground?
 - e. While it is falling, if it has only 100 J of potential energy at some point, how much kinetic energy does it have?
 - f. How high above the ground is the rock when it has 100 J of PE?
 - g. How fast is the rock moving when it has 100 J of PE?
 - h. While it is falling, if it has only 50 J of kinetic energy at some point, what is its potential energy?

- 7. Suppose a car has a kinetic energy of 2000 J.
 - a. If it moves with twice the speed, what will be its kinetic energy?
 - b. If it moves with three times the speed, what will be its kinetic energy?
- 8. A certain engine can make a car go from 0 to 100 km/h in 10 seconds. All other things being equal, if the engine has twice the power, how many seconds would it take to go from 0 to 100 km/h?

Energy Review

- 9. A car traveling at 60 km/h skids 20 m when its brakes are locked. How far will it skid if it is traveling at 120 km/h?
- 10. A hammer falls off a roof and hits the ground with 75 J of kinetic energy. If it fell from a roof twice as high, how much kinetic energy would it have when it hit the ground?
- 11. Does a car use more gas when the air conditioner is on? How about the headlights or radio?
- 12. A car has 2500 J of kinetic energy and it skids to a stop, losing all its kinetic energy. Where did this energy go?
- 13. Peter, Paul and Mary are lifting weights. Peter lifts 135 kg 0.8 m in 1 second. Paul lifts 150 kg 1.3 m in 1.4 seconds. Mary lifts 124 kg 0.9 m in 1.3 seconds.
 - a. Who does the most work?
 - b. Who is most powerful?

NAME:

Energy Review

- 14. A 25 g bullet with a horizontal velocity of 500 m/s, comes to a stop 12 cm within a solid wall.
 - a. What is the initial KE of the bullet?
 - b. What is the final KE of the bullet?
 - c. What was the average force stopping the bullet?
- 15. An apple falls 3.5 m from the branch of a tree to the ground below.
 - a. How fast is the apple moving when it hits the ground? Use conservation of energy.
 - b. At what point is KE = PE?
 - c. How fast is the apple moving when it is 1 m off the ground?
- 16. A frictionless roller coaster with a mass of 200 kg is at rest at point A. What is speed of the cart at point B and point C?

- 17. A force of 200 N is applied to a 50 kg crate to slide it across the floor a distance of 70 m.
 - a. How much work is required to slide the crate along the floor?
 - b. How much work would be required to lift the crate to a height of 70 m?

NAME: ____

- 18. An applied force of 20 N is required to push a 5 kg object up an incline that is 13 m long and 4 m high.
 - a. How much work is done by the applied force?
 - b. How much work would be needed to lift the 5kg object straight up to a height of 4 m?
 - c. Why does it take more work to use the incline?

Answers: 1) 3x	2) samel	3) 100 .1		4 a) 50 W	b) 25 W	c) 200 W
		b) 100 0		-) 0 1	-1) 050 /	-) 150 /
5) 100 J	6. a) 0 J	b) 250 J		c) U J	a) 250 J	e) 150 J
f) 10 m	g) 17.3 m/s	h) 200 J		7. a) 8000 J	b) 18,000 J	8) 5 s
9) 80 m	10) 150 J	11) Yes, yes, yes	3	12) brakes are hot	tter (KE became t	hermal energy)
13. a) Peter = 1080 J,	Paul = 1950 J, Mary =	1116 J		b) Peter = 1080 W	/, Paul = 1393 W,	Mary = 858 W
14. a) 3125 J	b) 0 J	c) 26,000 N	HINT:	25 g = 0.025 kg &	12 cm = 0.12 m	
15. a) 8.4 m/s	b) 1/2 way down	c) 7.1 m/s		16) B = 14.1 m/s a	& C = 24.5 m/s	
17. a) 14,000 J	b) 35,000 J	HINT: how much	h force	does it take to lift	up?	
18. a) 260 J	b) 200 J	c) because there	e is (pr	obably) friction or	n the incline	